Geobacter sulfurreducens strain engineered for increased rates of respiration.
نویسندگان
چکیده
Geobacter species are among the most effective microorganisms known for the bioremediation of radioactive and toxic metals in contaminated subsurface environments and for converting organic compounds to electricity in microbial fuel cells. However, faster rates of electron transfer could aid in optimizing these processes. Therefore, the Optknock strain design methodology was applied in an iterative manner to the constraint-based, in silico model of Geobacter sulfurreducens to identify gene deletions predicted to increase respiration rates. The common factor in the Optknock predictions was that each resulted in a predicted increase in the cellular ATP demand, either by creating ATP-consuming futile cycles or decreasing the availability of reducing equivalents and inorganic phosphate for ATP biosynthesis. The in silico model predicted that increasing the ATP demand would result in higher fluxes of acetate through the TCA cycle and higher rates of NADPH oxidation coupled with decreases in flux in reactions that funnel acetate toward biosynthetic pathways. A strain of G. sulfurreducens was constructed in which the hydrolytic, F(1) portion of the membrane-bound F(0)F(1) (H(+))-ATP synthase complex was expressed when IPTG was added to the medium. Induction of the ATP drain decreased the ATP content of the cell by more than half. The cells with the ATP drain had higher rates of respiration, slower growth rates, and a lower cell yield. Genome-wide analysis of gene transcript levels indicated that when the higher rate of respiration was induced transcript levels were higher for genes involved in energy metabolism, especially in those encoding TCA cycle enzymes, subunits of the NADH dehydrogenase, and proteins involved in electron acceptor reduction. This was accompanied by lower transcript levels for genes encoding proteins involved in amino acid biosynthesis, cell growth, and motility. Several changes in gene expression that involve processes not included in the in silico model were also detected, including increased expression of a number of redox-active proteins, such as c-type cytochromes and a putative multicopper outer-surface protein. The results demonstrate that it is possible to genetically engineer increased respiration rates in G. sulfurreducens in accordance with predictions from in silico metabolic modeling. To our knowledge, this is the first report of metabolic engineering to increase the respiratory rate of a microorganism.
منابع مشابه
The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter
Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the typ...
متن کاملDirect Correlation Between Rates of Anaerobic Respiration and Levels of mRNA for Key Respiratory Genees in Geobacter Sulfurreducens
متن کامل
Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.
A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at grow...
متن کاملAnalysis of Enhanced Current-Generating Mechanism of Geobacter sulfurreducens Strain via Model-Driven Metabolism Simulation
Microbial fuel cells (MFCs) are a class of ideal technologies that function via anaerobic respiration of electricigens, which bring current generation and environmental restoration together. An in-depth understanding of microbial metabolism is of great importance in engineering microbes to further improve their respiration. We employed flux balance analysis and selected Fe(iii) as a substitute ...
متن کاملA c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution.
The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metabolic engineering
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2008